
*0—nfl 2214 ST*I.WORD (lilY CALIF STANFORD ELECTRONICS LABS

-

~ F/* 5/2
lADLE SOFTWAR

I4

I .c ~_ _

‘-L~~~2.2

H :
~ 2O

~~L8

.25 flhlI~
4 Wfti 6

U I UN I t SI CII.U~I

NA~~*4M I~UHt Ml ~ ~NflAR ps A

2

~~~~~~~~~~79~~~978~
C O M P U T E R  S Y S T E M S  L A B O R A T O R Y

STANFORD ELECTRONICS LABORATORIES ~DEPARTr-IENT OF ELECTRICAL ENGINEERING - 
~~~~~

. 4 . ‘~ ‘

S T A N F O R D U N I V E R S I T Y
‘
~~~~~

~~
4 Stanford, California 94305 ~~~~. ~~~~~

t

a 
.~~~~~ 

- - .
~~~

-
~~~ /

/ )ESIGN AND ~ERIFICATION OF RELIABLE $OFTWARE I I 
- .~~~~~ 

~ NNUAL~~E~~ ,T,no. 2

Covering the ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /
_ _/

AFOSR Contract no F496Z~_ 77_ c_/~fl~c/
SEL Project N-771

D D C
Prepared for the ~~~~~~~

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH 11 SEP 20 1979

Boiling Air Force Base 1JIkEj t~rt~ Ii
Lii Washington, D. C. 20332 A

Prlnci 1 Investigator:

Prof.1 usan S. Owicki

79 09 14 iO l
~~~ ~~~~~~~~~~~~~


I

3

Research Objectives

Program verification has frequently been suggested as a tool for

improving software reliability. The purpose of this research is to

develop verification techniques that can be applied to complex program

systems involv ing concurrency, such as operating systems and network

coninunications managers.

Two complementary approaches have been pursued . The first ‘is the

development of basic tools for describing and verifying concurrent

programs; the aim is to find ways of reducing the complexity which arises

from concurrent interactions between the components of the system. These

tools are general purpose and should be applicable to a wide range of

problems. The second approach is the investigation of specific applications

by analyzing algorithms and programs from such domains as operating systems,

networks, and distr ibuted databases. These program examples provide test

cases for evalua ting the power of the basic tools and help to identify r
problem areas where further basic work is needed. In addition , analysis

of these programs often makes it possible to recognize comon patterns and

formulate rules that simplify the design and verification of program corn-

ponents that fit these patterns.

Status of the Research Effort

1. Basic tools

Our purpose here Is to devise general-purpose specification , and p.roof

methods for concurrent programs. Two types of correctness criteria can be

distinguished : Invariant properties, which should be true throuqhout system

execution, and ‘liveness constraints, which require that certain events must

eventually occur. For example, an airline reservation system might preserve

the invariant that no flight Is overbooked and guarantee, as a liveness


~~~
.—. _In_ _.,_-, -~~~~

4

constraint, that each request for a reservation is eventually answered.

Our techniques for dealing with the two kinds of problems are discussed

below. In both cases, we are concerned with managing the complexity of

the verification process, and so favor modular methods that allow factoring

the verifica iton of a system into relatively independent treatment of each

component.

First, let us consider the proof of invariant properties. Concurrent

programs can be constructed using three kinds of modules : processes ( the

active components ), monitors ( which implement shared data objects and

operations) and compound modules constructed from other modules. We have

developed a specification format in which each module is described by

assertions giving Its Initial state, its requi rements from other modules ,

invariant relations between Its local variables , and effects of i ts

procedures ( if It has any ). Veri fication rules for proving that a module

implementation meets Its specifications take several forms. For process and

monitor modules, verification requires direct analysis of the program code.

Because of the spec if icat ion style , this step is in general no more complex

than for a non-concurrent program. For compound modules, verification depends

only on the specification of the components, and not on their implementation.

Since each module verification is performed independently, and the effect of

interactions between components Is limi ted to a small , well -defined inter-

face, the complexity of the system proof does not grow unmanageably as the

size of the system increases.

The basic rules for proving Invariant properties are presented in

(1]. In (2), the rules are amplified and Illustrated by the design and

verification of a simple system for routing mail in a ring network.

This method of specifying and verifying Invariant properties Is adequate

_____________ -.-——-~~~~~~~~~ —-———- -- - .~~— .. —-—— ~.-—

I., —~~ _ _ ~~ — ~~~~~ .~ — —.. - -~ — —~~‘- 
—..—.— — ,— —-

~
— 

.—~~ ~~~ ——- ~~~~~~~~~ ~~~~~~~ ~~~~~~~~



__________ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--

- - -

5

for a wide range of concurrent programs. Our work on liveness properties

is at an earlier stage, but the Initial result are promising . Our approach

Is based on temporal logic , In which one can express assertions about

future program states. This is accomplished by introducing two symbols:

~~ (eventual ly) and D(henceforth). The liveness requirements of the

airl ine reservations system described above can be expressed in temporal

logic by: t
~~(request R received ~ c~ request R answered).

Previously, the statement and verification of liveness properties has been

done quite imformally. As a result, correctness proofs have been very

susceptible to ambiguities In the problem statement and to errors of

reasoning. The main contribution of temporal logic is that it provides a

precise means of stating and proving liveness requirements.

The use of temporal logic in describinq and verifying small programs

is described in (6). The methods presented there, however , are not suitab le

for large programs because they do not provide for modular decomposition.

To facili tate modular proofs, we propose to extend the specifications of a

module to include one or more conditiona l promises of the form

If P thenc3Q unless delayed by D,

where P, Q, and 0 are assertions about the program state.

As an example, consider a pipeline of processes commiunicating through

buffers. Process
~i.

which moves data from buffer B1...1 to buffer Bj,

might have the following specifications:

Is not ful l unless delayed by Bj full

2. if x is in B ’i_’~, then ‘~~fj(xj) Is in B1 unless
delayed by Bj full

Verifying that a module Implemented by a process or monitor meets Its

liveness promises depends on axioms that characterize the liveness properties

- — -

~~~~~~~~T.. c r ~~
. - - .~:~ 



_____________________________________________________________________________________ 

_
~
.._-_- -‘w

~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~ ‘‘~~~~~ ~~~~~~~

of progranmiing language statements (the properties of synchronizing I
-

operations ‘like semaphore wait and signal are especially Important).

F~r compound modules , the liveness of the whole module can be verified

using just the specifications of its components. For example, in the

pipeline program, the entire system of processes and buffers satisfies

the unconditional promise.

if x In B0 then Qfk k-l~~~
1 l (x)...) Is inB k

The proof of this unconditional system promise involves showing that

-
I Pj’s promise to remove items from B1-’l cancels out Pj_i ’s delay

condition . Proof rules for verifying promises of the sort are currently

being developed.

2. Applications

We have Investigated the design and verification of concurrent systems

in three applications areas: operating systems, network cumunications

protocols, and distributed databases. The work In each area is described

below.

In operating systems, we have considered the design of an operating

system nucleus; most of this work is described in the first annual report.

An Important result was the Identification of two patterns that account

for most operating system modules: the transmitter, which produces a stream

of output values from a stream of Input val ues, and the resource allocator ,

which manages the sharing of some object between competing modules .

Verification methods for these module types are described in (2] and (3].

Deadlock avoidance Is a particular probl em for resource allocators,

and we have Investigated it in some detail. A variety of deadlock-avoidance

strategies have been proposed in the literature. They have in coninon the

property that deadlock Is prevented by refusing to allocate resource if

— —,--——---—- — -- -,-
~~~-

--, - — — —.-- ——,,~
__ 

—.--- — .— .‘— — —.-- -, —-- —-

7

doing so leads to an “unsafe° state: one In which further resource

requests might result In deadlock. The strategies differ in the amount

of computation they preform in evaluating a request and in the amount of

information they require about future resource requests from the competing

modules.” In general , a strategy that performs more computation or uses

more information about resource needs can recognize a larger number of

requests as “safe”, and so impose less delay on the competing modules. We

have developed a model that allows a precise characterization and comparison

of these differences; analysis of the model has suggested extensionsthat -

Improve the performance of previous algorithms . This work is reported in [5].

The second application area we have stud ied is network comunication

protocols. Here most of the modules are instances of the same transmitter

patter that occurs so often in operating systems. The principle difference

Is that comunication protocols must function correctly even in ~ie presence

of processor failures and transmission line errors. We can incorI1~rate

these failure possibilities into the verification in a straightforward

manner. For example, the invariant of a perfect coninunication link is that

the output it has delivered is an initial segment of the input it has received .

A coniiiunication link which may lose or re-order messages is characterized by

an Invariant that states that Its output is a permutation of a subsequence

of its input. The liveness promise of a failure-free link is that each

input value will eventually be output, while the promise of a link which

can lose a message a bounded number of times is that a message which appears

a sufficient number of times In the input will eventually reach the output.

We have found that our techniques for verifying invariants are satisfactory

In this application . Work Is in progress to find powerful means of dealing

_J 

with llveness in order to cope with the liveness characteristics of unreliable

modules.



— J
_•__

~
____ ’______ ___ - -~

w.___ ——---- —‘ -
~

- --- ..— --

8

The final application area we have considered is distributed data-

bases. Here the issue of concern Is maintaining the consitency of multiple

copies of data while allowing access from several users to take place con-

currently. A new consistency control algorithm has been developed t4]; it

uses a distinguished “true copy” of each data item whkh Is the locus of

locking for that data item. The true copy may migrate throughout the

system, and may be split Into multiple “shared copies” that can be read

but not modified . This allows concurrent operation , with a lower overhead

of messages than many existing algorithms. Work is in progress to make the

~~~~~~~~ algorithms resilient in the face of failures . The consistency of the true-

copy algorithm is easy to verify. It does not depend on the use of a par-

ticular policy for avoiding deadlocks or resolving competing resource

demands, so it can serve as a basis for a variety of schemes whose consis-

tency will then be easily verified .

The consistency criterion required of distributed databases is an example

of an invariant property, which we are wel l equipped to verify. Proving

liveness Is more difficult, especially when reliable service in the presense

of errors is required. It seems ‘likely that the tools being developed for

coninunication protocols will also be useful for distributed database systems.

Over all , our experience in examining applications problems has been

fruitful . It confirms our belief that the basic tools for dealing with

InvarIants are now satisfactory, although there is still work to be done in

deriving techniques tailored to particular applications . In verifying live-

ness, we are at an earlier stage. The most pressing problem is to find

methods of dealing with resilient systems that must provide service In spite

of component failures.

9

Publications

[1). Owick l , S. “Specifications and Proofs for Abstract Data TypesIn Concurrent Programs ,” in Bauer and Broy (ed.) ProgramConstruction, Springer - Verlag . 1979, pp 174-197.
[2). Owicki ., S. “Specifications and Verification of a Network Ma ilSystem,” in Bauer and Broy (ed.) Program Construction, Springer-Verlag, 1979, pp 198-234.

[3]. Owicki , S. “Verifying Parallel Programs with Resource Allocati on ,”Proc. of the International Conference on Mathematica l Studies ofThformation Process~ng, Springer-Verlag, to appea r 19/9.
[4). Mlnoura , 1. “A New Concurrency Control Al gorithm for DistributedDatabase Systems,” Proc. 4th Berkeley Conference on DistributedData Management and Computer Networks, “ August , 1979.
(5]. Minoura , T. “Deadlock Avoidance Revisited ,” submitted to Journalof the ACM.

(6). Lamport, 1. and Owicki , S. “Proving Properties of Concurrent Programs ,”in preparation , to be submitted to Computing .~~~~~~

L. ~ ~~~

-~ ~~~~~~~~~~~~~~~~~~~~~~~~

F ~‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1~’ ~~~~~~~
t~~
’_ ~~~~~~~~~~~~~~-

~t
_

_ -~
i i d:id , ~~

I

~~~~~~~~~~~~~~~~~~~~



• ~~~ 
.——-.- -— .~—.--- ‘—~---—--—-. ,--- —,-.,-- - -.——~.“-- ... - — -..-,.- — —.—- ~—‘.

~
----- --.--- 

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— - ,.-. $ 9A(~~. (~~h•~ D e l i i t . ICV . - i)
~~~~~~ u~~~~r V ’

L j ~~~~~~~~~
-_- 

PAGE I :i.ot ~ CO FORM 

—

~~~~~~~~~~~~~~ UMBTh VT A~~CESUION NO. 3. RECIPIENTS C A T A L O G  NUMBER

. AFO’~I~-TR - 79-0978 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4. T IT L E (mtd Subtitle) S. TYPE OF REPORT 6 PERIOD COVERED

DESIGN AND VERIFICATION OF RELIABLE SOFTWARE Interim
- 6. PERFORMING ORG. REPORT NUMBER

7 Au T~4OR(.) S. CONTRACT OR GRANT NUMBER(.)

Susan Owicki
F49620—77—C—0045

9. PERFORMING ORGANIZAT ION NAM E AND ADDRESS 10. PROGRAM ELEMENT. PR O.IECT . T A SK
A R E A & WORK UNIT NUMBERSStanford University

Computing Systems Laboratory 61102F 2304/A2
Stanford, CA 94035

I I . CONTROLL ING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research/NM J~u1y 1979
Boiling AFB, Washington, DC 20332 ~~~~~~~~~~~~~~~~ 13. NUMB EROF PAGES

~4. MONITORING AGENCY NAME 6 AD DRESS(J I diile,.nt from Controlling Office) IS. SECURITY CLASS. (of thu report)

UNCLASSIFIED
15.. DECLASS IFICATION/ DOW PIGRAD ING

SCMEDUL E

IS. DISTRIBUTION STATEMENT (ol thu Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ab,tract entered In Block 20, if different ironi Report)

S

.
L ~e. SUPPLEMENTARY NOTES

IS. KEY WORDS (Con finue on reverie aide ii nec.saary end id.ntily by block numb.F) J - -

program verification, operating system design, parallel programming,
concurrent programming, program proving, temporal logic, distributed
databases , network protocols.

20. ASSTRA C (ontinue on raven , aide Ii nec.a.a?y and ld.ntily by block number) _ —‘

ih is research project is concerned with methods for developinq
provably ccrrect system programs . Two complementa ry approaches have
been pursued, the first is the development of basic. tools. for de-
scribing and veri fying concurrent programs ; the aim is to find ways
of mana 9ing the complexity which arises from concurrent interactions
between system components. Specification and proof methods for in-
variant properties of modular programs have been developed. They

...il.l ow i. ade.oendent upr if l raf inn nf ~~~h mnduTh .. And ,~rrwjde a
DO ,~~~~~ 1473 UNCLASSIFIED

SECuRITY C L A S S I F I C A T I O N OF T HI ’. PA G E I4~ipn I).. Fni.,.,J)

: iii.

Si IC A l ~~~~ ~ i 1 .~ ~., Ai,~ .I* I.e i 11.1. I~nt,n.d)

~~~~~~~~~bstra~~
’
~~~~tiriued.

- -
-

‘
~~ufficient basis for reasoning about a wide class of concurrentsystems. Tools for stating and veri fying other types ofrequirem ents , e.g. that a message Is eventually delivered , are in
an earlier stage. Techniques have been desi gned that use .jemporallogic , a lo gi cal system that allows statemen ts about future events~~

The second approach that has been taken here is the investigation
of specific problems in three application s areas: operating systems,network co~Inunica tion protocols , and distributed databases. In
addition to providing test cases for evaluating the basic tools,
these applications are important in their own right. It has been
possible to identify common patterns, and to build more sophisticated
techniques for handling them from the basic tools discussed above.
A major issue in these applications is dealing with unreliable
components, and prel iminary descriptions of methods for treating
component failure are discussed .

UNCLASSIFIED
SECuR ITY CI.ASSIFICATION OF THIS PAG E(When D.Ie Entered)

_____________ _____—

~

~~~

-----

~~~~~

-- --

~~~~~~~~~~~~~~~~



a a -
‘
~~~~
. \ 10

Professional Personnel

Princ iple Investigator: Susan Owicki

Graduate Student Research Assistants:

Keith M arzu ll o 9/77 - presen t
Toshimi 1-linoura 9/77 - 1/78 and 10/78 - present H
Alfred Spector 1/77 - 6/77

Interactions

A. Spoken Papers:

Owicki , S., “Verfiying Protocols as Parallel Programs ’ at Protocol Verification
Workshop. March 20-21 , 1979. Sponsore d by DARPA , organized by Vint Cerf.

Owicki , S. Lecturer at International Sun,ner School on Program Construction ,
Germany, July. 1978.

Owicki , S “Mode li ng Parallel Programs Us ing Tempora l Lo gi c TM IFIP Working
Group 2.2, Ja pan , August 1978.

B. Other in teractions

Susan Owicki is co-principa l investigator with John Hennessy on Joint Services
Electronics Program contract DAAG29-79-C-0047 entitled “Realiabi lity in
Distributed Database Systems.”

Susan Owicki was a member of the program comittee for the International
Symposu-im on the Semantics of Concurrent Computation , Ev i an , France ,
July 1979.

